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Machine Translation as an NLG task

● NLG converts a meaning representation into a NL utterance

● The focus of this talk is on MT evaluation

● How is it different?

○ MT is constrained by the original sentence

○ But still a lot of potential variability in the space of possible 

outputs

■ Underspecification and ambiguity

■ Lack of extra-sentential and extra-linguistic context
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● Large space of possible correct translations

● Multiple different aspects involved in evaluation

○ Definition of quality

■ Adequacy/fluency scales, preference judgements

■ Error annotation 

■ Task-oriented evaluation (e.g. PE effort)

○ Granularity

■ System-level vs. sentence-level

■ Document level -> sentence level -> word level 

What makes MT evaluation challenging?
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Approaches to Automatic MT Evaluation
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Automatic evaluation Quality estimation

Input representation MT output
Human reference(s)

Source
MT output

Learning mechanism No Yes

Supervision Human reference(s) Gold quality labels

Algorithm Similarity metrics Feature-based ML

MT system Black-box Black-box/Glass-box (statistical MT) 

Gold labels Intrinsic quality measures Task-oriented, e.g. HTER

Meta-evaluation metric Spearman/Pearson correlation RMSE/MAE



Approaches to Automatic MT Evaluation
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Automatic evaluation Quality estimation

Input representation Source, MT output, Reference(s) Source, MT output
MT system

Learning mechanism Yes

Supervision Reference(s)
Gold quality labels
Pseudo-references
MT hypotheses

Gold quality labels
Unsupervised

Algorithm Similarity metrics Feature-based ML

NN-based systems
Pre-trained representations (BERT)

MT system Black-box/Glass-box (neural MT)

Gold labels Intrinsic quality measures/HTER

Meta-evaluation metric Spearman/Pearson correlation



○ Most recent SOTA in MT evaluation and QE

■ BertSCORE  [Zhang et al., 2019]

■ Winning submissions to WMT2020 QE Shared Task

[Fomicheva et al. 2020, Ranasinghe et al. 2020]

○ Up to Pearson correlation of 0.9 with human judgments

○ But very resource-heavy models

Approaches to Automatic MT Evaluation
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Pre-trained contextualised 

multilingual representations 

[Devlin et al. 2018, Conneau 

et al. 2019]



This work

● Bergamot project: https://browser.mt 

○ Client-side MT in a web-browser 

○ Alongside MT outputs, provide quality estimates

● Requirements for quality estimation

○ Efficient: light and fast models

○ Robust: open domain and language independent

○ Little or no supervision
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This talk: glass-box evaluation for NMT

● What if instead of training neural models to evaluate MT quality we 

use the one we already have?

● How to exploit internal information from the MT system

■ For quality estimation

■ For reference-based MT evaluation

● Assumption

○ If the model is confident then translation is good

○ How to measure confidence?
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Glass-box Evaluation Methods
for Neural MT
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Fomicheva et al. (TACL2020). Unsupervised Quality Estimation for Neural Machine Translation
Fomicheva et al. (ACL2020). Multi-hypothesis Machine Translation Evaluation



Assume seq-seq model with attention

Encoder maps the input sequence x=x
1

..x
N

 into a 

sequence of hidden states

Summarized into a single representation via 

attention mechanism

Given this representation, the decoder produces 

an output sequence y=y
1

..y
T

  one word at a time

NMT Reminder
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Linear layer projects decoder output into a logits 

vector ∈ ℝ𝓥 where 𝓥 is the size of target 

vocabulary

Softmax layer turns logits into probabilities

NMT Reminder
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At each time step the decoder produces a 

conditional probability distribution over all the 

words in 𝓥

The word with the highest probability is 

returned as output at given time step

NMT Reminder
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Encoder-decoder attention

Strength of connection between source and 

target tokens as an indicator of confidence

Entropy of encoder-decoder attention weights

Glass-box evaluation for NMT
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Output probability distribution

● Log-probability of predicted tokens

● Entropy of the softmax distribution

● Dispersion of token-level probabilities

Glass-box evaluation for NMT
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Glass-box evaluation for NMT

● Log-probability of the predicted tokens

● Averaged to get a sentence-level estimate
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This is a phrase
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This talk: glass-box evaluation for NMT
Entropy of the output distribution
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This is a phrase

phrase 0.6

sentence 0.3

... ...

zzz 0.0001

𝓥



Glass-box evaluation for NMT
Dispersion of token-level probabilities
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This is a phrase
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Overconfident predictions 

Neural networks can return wrong 

predictions with high probability

Softmax does not properly capture 

predictive uncertainty

● Aleatoric uncertainty (data)

● Model uncertainty (parameters)

● ...

Glass-box evaluation for NMT
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The problem of MT evaluation becomes 

the problem of calibration and uncertainty 

estimation in neural networks

Glass-box evaluation for NMT
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Glass-box evaluation for NMT

● Bayesian approach

○ Many possible models can explain 

the training data

○ Replace point estimates of model 

weights with probability 

distributions 

● Prohibitive costs for deep NN 

● Simpler approximations

○ Monte Carlo Dropout [Gal and 

Ghahramani, 2016]

20

Encoder

Softmax

EncoderEncoderEncoder
A

tt
en

ti
o

n
EncoderEncoderEncoderDecoder

SoftmaxSoftmax

SoftmaxSoftmaxLinear

Hello World MundoHola



● Keep source and translation the same

● Compute segment-level translation probabilities K times with perturbed parameters

● Report mean and variance of the resulting distribution

MC Dropout for Quality Estimation
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● Run inference K times with perturbed parameters

● Measure lexical similarity between generated translations

MC Dropout for Quality Estimation
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Example: High-Quality Estonian-English MT
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Source Siis aga võib tekkida seesmise ja välise vaate vahele l ohe.

Reference This could however lead to a split between inner and outer view.

MT output
1-best

Then there may be a split between internal and external viewpoints.

MT hypotheses
MC Dropout

Then, however, there may be a split between internal and external viewpoints.

Then, however, there may be a gap between internal and external viewpoints.

Then there may be a gap between internal side and the external view.

Then there may be a split between internal and external perspectives.



Example: Low-Quality Estonian-English MT
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Source Tanganjikast püütakse niiluse ahvenat ja kapentat.

Reference Nile perch and kapenta are fished from Lake Tanganyika.

MT output
1-best

There is a silver thread and candle from Tanzeri.

MT hypotheses
MC Dropout

There will be a silver thread and a penny from Tanzer.

There is an attempt at a silver greed and a carpenter from Tanzeri.

There will be a silver bullet and a candle from Tanzer.

The puzzle is being caught in the chicken’s gavel and the coffin.



Example: Low-Quality Estonian-English MT
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Source Tanganjikast püütakse niiluse ahvenat ja kapentat.

Reference Nile perch and kapenta are fished from Lake Tanganyika.

MT output
1-best

There is a silver thread and candle from Tanzeri.

MT hypotheses
MC Dropout

There will be a silver thread and a penny from Tanzer.

There is an attempt at a silver greed and a carpenter from Tanzeri.

There will be a silver bullet and a candle from Tanzer.

The puzzle is being caught in the chicken’s gavel and the coffin.

Hypotheses
N-best

There is a silver thread and candle from Tanzeri.

There is a silver thread and candle from Tanzeri.

There is a silver thread and candle from Tanzeri.



● 7 Language Pairs

● Wikipedia domain

● Manual quality annotation

● 10K sentence pairs per language pair

● NMT systems: SOTA Transformers

● NMT systems used to generate the translations are available

https://github.com/facebookresearch/mlqe

https://github.com/sheffieldnlp/mlqe-pe

http://www.statmt.org/wmt20/quality-estimation-task.html

MLQE Dataset
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https://github.com/facebookresearch/mlqe
https://github.com/sheffieldnlp/mlqe-pe
http://www.statmt.org/wmt20/quality-estimation-task.html


Glass-box Reference-based Evaluation 
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Multiple references improve 

MT evaluation

But they are expensive to 

collect

Use MT hypotheses generated 

with MC dropout instead

- BLEU
- Meteor
- BERTscore
- ...



● How to combine this information?

● Why would this work?

○ Better cover the space of possible solutions

○ Capture predictive uncertainty

Multi-Hypothesis MT Evaluation
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Results for Reference-based Evaluation

29



1. Unsupervised approach

○ Use attention-based or probability-based metrics directly as 

quality indicators

2. Lightweight feature-based regression model

○ Train a simple regression model using the indicators as features

Glass-box Quality Estimation
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Results for Quality Estimation
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MLQE dataset
Pearson correlation with human judgements

Q & A



MLQE dataset
Pearson correlation with human judgements

Results for Quality Estimation
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Results for Quality Estimation
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Results for Quality Estimation
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TP: Log-probability of MT output

Att-Ent: Entropy of attention weights



Results for Quality Estimation
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D-TP: Average log-probability over K forward passes with test-time dropout

D-Lex-Sim: Lexical similarity between K hypotheses with test-time dropout



Results for Quality Estimation
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GB-combo: Combination of above indicators as features in a regression model



Results for Quality Estimation
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WMT2020 Shared Task on QE 

PredEst: Neural-based Predictor-Estimator model [Kim et al., 2017]

Bergamot-LATTE: pretrained contextualized multilingual representations [Sun et al., 2020]



Results for Quality Estimation
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This is better than 
reference-based 
evaluation



Results for Quality Estimation
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Size of the models

Bergamot-LATTE: >>561M parameters (> 3G on disk and >6GB in RAM)

GB-combo: 103 features



Heafield et al. (2020). Findings of the Fourth Workshop on Neural Generation and Translation

Accuracy-efficiency trade-off
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Size of the models

GB-combo: 103 (features)

Bergamot-LATTE: >>561M parameters

Results for Quality Estimation
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What is wrong with the results for high-resources language pairs?



Distribution of human scores
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Distribution of human scores
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Evaluation of MT Evaluation 
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Correlation can hide very different behaviours

MT Evaluation beyond Correlation

45
Amigó et al. (2009)



Meta-evaluation study of the behavior of a wide range of reference-based 

evaluation metrics

What is more challenging to evaluate: low or high-quality MT?

MT Evaluation beyond Correlation Fomicheva and Specia, 2019
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Correlation “breakdown”: measure ordinary Pearson correlation in various 

sub-samples of data

MT Evaluation beyond Correlation

47



● Correlation “breakdown” can be 

biased 

● Local Gaussian correlation: Fit a 

gaussian density in the vicinity of 

each data point

● Confirms that low-quality MT is more 

challenging for reference-based 

metrics 

MT Evaluation beyond Correlation
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https://cran.rstudio.com/web/packages/localgauss/index.html

https://cran.rstudio.com/web/packages/localgauss/index.html


● Same observation for manual evaluation

● Plot average quality score against the 

standard deviation of scores assigned to 

the same sentence by different human 

judges

● Variability in sentence scores reflects the 

uncertainty involved in the evaluation 

process

● Higher variability indicates that the 

sentence is more difficult to assess

 

MT Evaluation beyond Correlation
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● Possible explanations

○ Low-quality MT outputs contain a higher number of errors

○ For reference-based evaluation metrics

■ Metrics do not measure error severity

■ Lack of informative matches with the reference

○ For humans

■ Perceived impact of different translation errors on the overall 

translation quality can vary greatly among annotators

 

MT Evaluation beyond Correlation
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Conclusions 
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Conclusions

● Reference-based and reference-free evaluation should join forces

● Look inside the MT systems (NLG systems?) for useful information

● Quality estimation methods can benefit from all the work on 

calibration and uncertainty estimation for neural networks

● Pay attention to other aspects beyond correlation with gold labels

○ Properties of the gold label data (distribution, noise, etc.)

○ Model failure modes

○ Accuracy-efficiency trade-off
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Think Inside the Box:
Glass-box Evaluation Methods for 
Neural MT

Data: https://github.com/facebookresearch/mlqe

Code: 

https://github.com/pytorch/fairseq/tree/master/examples/unsupervised_quality_estimation

https://github.com/facebookresearch/mlqe
https://github.com/pytorch/fairseq/tree/master/examples/unsupervised_quality_estimation

