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Abstract

We propose a new metric for evaluating seman-
tic accuracy of data-to-text generation based
on a neural model pretrained for natural lan-
guage inference (NLI). We use NLI to check
textual entailment between data and text in
both directions, allowing us to reveal omis-
sions or hallucinations. Input data are con-
verted to text for NLI using trivial templates.
Our experiments show that our metric can
achieve high accuracy in identifying erroneous
system outputs (DuSek and Kasner, 2020).

1 Introduction

A major challenge in evaluating data-to-text (D2T)
generation is measuring semantic accuracy, i.e.
checking if a generated text contains all and only
facts from input data. While state-of-the-art neural
D2T models produce very natural outputs, they are
prone to omitting or hallucinating facts (Gehrmann
et al., 2018; Castro Ferreira et al., 2019; Dusek
etal., 2020), which restricts their real-world deploy-
ment. Recognizing these errors is thus essential for
proper evaluation.

Standard word-overlap metrics (Papineni et al.,
2002; Lin, 2004; Banerjee and Lavie, 2005) or
trained approaches to NLG evaluation (Zhang et al.,
2020a; Sellam et al., 2020) do not cover accu-
racy explicitly. Handcrafted heuristics (Reed et al.,
2018; Mi et al., 2019), which are the go-to method
for evaluating D2T accuracy, are not able to capture
the variety of possible hallucinations or omissions.

We note that the task of checking if a gener-
ated sentence includes/entails a particular fact is
very close to the task of natural language inference
(NLI). Recently, neural models for NLI (Zhang
et al., 2020b; Liu et al., 2019a,b) reached near-
human levels of performance and NLI was used for
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evaluating the output of abstractive summarization
systems (Maynez et al., 2020). This leads us to
propose a new metric for evaluating the semantic
accuracy of D2T generation, which is based on a
neural model pretrained for NLI. Using NLI, we
check whether the text contains all facts from the
input data and vice-versa. We demonstrate that
this approach is viable and while not perfect, it can
achieve high accuracy.

2  Our Approach

The input to our metric is a set of facts (the input
for a D2T system) and the corresponding verbaliza-
tion of these facts (the output from a D2T system).
In our setup, the facts are RDF-like triples in the
subject-predicate-object form. Our metric uses an
NLI model to check textual entailment between the
input data and the output text in both directions. By
inferring input facts from the generated text, we
can check for omissions, while the other direction
allows us to check for hallucinations.

NLI is a sequence classification task which takes
two inputs—a hypothesis and a premise—and pro-
duces one of the possible outputs: the hypothesis is
entailed by (follows from) the premise, contradicts
the premise, or their relation is neutral. We con-
sider a NLI check as passed if the model predicts
entailment as the most likely relationship between
the premise and hypothesis texts.

The structured D2T input data are converted to
text for use with the NLI model by a trivial template
for each fact, handcrafted or extracted from NLG
systems’ training data. We consider two cases:

(1) Default: The templates can be handcrafted or
extracted from the NLG systems’ training data
for each predicate.

(2) Backoff: We use only a single, universal “back-
oft” template for all the facts, in the form: The
<predicate> of <subject> is <object>.



Input data
(Blue Spice | eat_type | pub)
(Blue Spice | area | riverside)

NLI model

Generated text

You can bring your kids
to Blue Spice in the
riverside area.

Templates

eat_type: <subj> is a <obj>.
area: <subj> is located in
the <obj>.

© P: You can bring your kids to Blue Spice in the riverside area.

C: 0.87 N: 0.09 E: 0.04 - omission

. P: Blue Spice is a pub. Blue Spice is located in the riverside.

C: 0.72 N: 0.17 E: 0.11 - hallucination

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Result
H: Blue Spice is located in the riverside. omission
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +hallucination
C:0.01 N:0.02E: 0,97 = not_OK

Omitted facts
(Blue Spice |
eat_type | pub)

Figure 1: An example of evaluating the output from a D2T system with our metric. The generated text is used as a
premise (P) to check for omissions and as a hypothesis (H) to check for hallucinations. The NLI model generates
probabilities for contradiction (C), neutral (N) and entailment (E).

The generated text is considered correct if it men-
tions all and only the input facts. We thus check if
the text contains any omissions or hallucinations in
two steps (see Figure 1 for an example):

(1) To check for omissions, we use the whole gen-
erated text as a premise and sequentially feed
each fact as a hypothesis to the NLI model. Any
failed NLI check is considered an omission.

(2) To check for hallucinations, we use a concate-
nation of all facts as a premise and feed the
generated text as a hypothesis to the NLI model.
If this NLI check fails, the text is considered to
contain hallucination.

Our metric’s output is either 4-way: OK (all NLI

checks passed), omission, hallucination or omis-

sion+hallucination (based on failed checks), or
2-way where the latter three collapse into not_OK.

3 Experiments and Results

We use pretrained RoBERTa (Liu et al., 2019b),
which was finetuned on the MultiNLI data
(Williams et al., 2018), as our NLI model. We
use the model as is, without any further training.
We experiment with two recent English data-to-
text datasets with a triple-like format: WebNLG
(Gardent et al., 2017) and E2E (Novikova et al.,
2017).! For our Default setup, we automatically
extracted templates from single-triple examples in
the WebNLG training data and handcrafted 8 tem-
plates for E2E. For WebNLG, we compare our met-
ric with crowdsourced human ratings of semantic
adequacy (Shimorina et al., 2019). For the E2E
dataset, we compare against the handcrafted auto-
matic script that was used to check the challenge
results for semantic accuracy (DusSek et al., 2020).

'E2E data use attribute-value pairs relating to a restaurant;
we convert them to triples where the restaurant is the subject.

We use the 2-way outputs of our metric in both
cases. We additionally performed a manual error
analysis of 100 error examples for each dataset.

We show that even without any human refer-
ences or in-domain training and with minimal hand-
crafting, our approach achieves high accuracy (De-
Sfault: 93.3%, Backoff: 87.4%) on the E2E Chal-
lenge data (DuSek et al., 2020) when compared
against the handcrafted evaluation script. Our man-
ual error analysis identified several issues: (1) prob-
lems with interpreting some values (such as “less
than £20” as “cheap”), (2) errors in the handcrafted
automatic evaluation script, (3) edge cases (should
“high restaurant” be considered OK for “high price
range”?), (4) hallucinations that do not correspond
to slots and cannot be detected by the handcrafted
script. We consider 45 out of the 100 error exam-
ples as correctly classified by our metric.

On the more challenging WebNLG dataset, our
metric performs worse but still produces useful
results (Default: 77.5%, Backoff: 76.8% accuracy).
Our manual error analysis indicates several reasons
for differences from human judgments: (1) while
our metric is binary, the human judgments are on a
scale and it is hard to pick a threshold, (2) imprecise
templates can confuse the NLI (cf. the less than
1% difference in the accuracy of the Default and
Backoff setups; this could be mitigated by a better
template selection), (3) human annotators tend to
give lower score to accurate but ungrammatical or
poorly organized texts. Again, our re-examination
shows that 42 out of the 100 error examples were
in fact correctly classified by our metric.

In sum, we believe that our approach is com-
petitive with crowdsourced human ratings or hand-
crafted scripts customized for each domain while
requiring much less manual effort.
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